# 谐振子哈密顿量

  • 哈密顿量:

    H^=p22m+12mω2x2\hat H = \frac{p^2}{2m} + \frac12 m \omega^2 x^2

  • 无量纲化:

    定义无量纲坐标和动量:

    x=mωx=αxp=1mωp=1αpx^\prime = \sqrt{\frac{m \omega}{\hbar}} x = \alpha x \\ p^\prime = \sqrt{\frac{1}{m \hbar \omega}} p = \frac{1}{\hbar \alpha} p

    对易关系:

    [x^,p^]=i[x^,p^]=i[\hat x, \hat p] = i\hbar \rightarrow [\hat x^\prime, \hat p^\prime] = i

    哈密顿量可改写为:

    H^=12ω(p^2+x^2)\hat H = \frac12 \hbar \omega (\hat p^{\prime 2} + \hat x^{\prime 2})

# 升降算符

  • 升降算符定义:

    a=12(x^ip^)=12(αx^iαddx)a=12(x^+ip^)=12(αx^+iαddx)a^{\dagger} = \frac{1}{\sqrt{2}} (\hat x^\prime - i\hat p^\prime) = \frac{1}{\sqrt{2}} (\alpha \hat x - \frac{i}{\alpha} \frac{d}{d x}) \\ a = \frac{1}{\sqrt{2}} (\hat x^\prime + i\hat p^\prime) = \frac{1}{\sqrt{2}} (\alpha \hat x + \frac{i}{\alpha} \frac{d}{d x})

  • 坐标动量算符表示:

    反解可得:

    p^=i2(aa)x^=12(a+a)\hat p^\prime = \frac{i}{\sqrt{2}} (a^\dagger - a) \\ \hat x^\prime = \frac{1}{\sqrt{2}} (a^\dagger + a)

  • 基本性质:

    对易关系:[a,a]=1[a, a^\dagger] = 1

    平均值非负:aa=<ψaaψ>=(aψ,aψ)0\overline{a^\dagger a} = \left< \psi | a^\dagger a | \psi \right> = (a \psi, a \psi) \ge 0

  • 数算符与哈密顿量:

    定义数算符 N^=aa\hat N = a^\dagger a,则哈密顿量可表示为:

    H^=ω(N^+12)\hat H = \hbar \omega (\hat N + \frac12)

# 本征态与能量

  • 本征方程:

    态矢量 n>\left| n \right> 是数算符 N^\hat N 的本征态,其本征值为 nn

    N^n>=nn>\hat N \left| n \right> = n \left| n \right>

    n>\left| n \right> 也是哈密顿量 H^\hat H 的本征态,其本征能量为 EnE_n

    H^n>=ω(n+12)n>\hat H \left| n \right> = \hbar \omega (n + \frac12) \left| n \right>

  • 升降算符的递推性质:

    降阶算符 aa

    a0>=0an>=nn1>a \left| 0 \right> = 0 \\ a \left| n \right> = \sqrt{n} \left| n - 1 \right>

    升阶算符 aa^\dagger

    an>=n+1n+1>a^\dagger \left| n \right> = \sqrt{n + 1} \left| n + 1 \right>

  • 本征解与能量:

    基态波函数:

    ψ0(x)=απ14eα2x22\psi_0(x) = \frac{\sqrt{\alpha}}{\pi^{\frac14}} e^{-\frac{\alpha^2 x^2}{2}}

    激发态波函数:

    ψn(x)=1n!anψ0(x)\psi_n(x) = \frac{1}{\sqrt{n!}} {a^\dagger}^n \psi_0(x)

    本征能量:

    En=ω(n+12)E_n = \hbar \omega (n + \frac12)