# 极坐标与球坐标下的数学工具

# 坐标系单位向量转换

  • 球坐标系单位向量 (e^r,e^θ,e^ϕ)(\hat{e}_r, \hat{e}_\theta, \hat{e}_\phi) 到直角坐标系单位向量 (i^,j^,k^)(\hat{i}, \hat{j}, \hat{k}) 的转换:

    e^r=sinθcosϕi^+sinθsinϕj^+cosθk^e^θ=cosθcosϕi^+cosθsinϕj^sinθk^e^ϕ=sinϕi^+cosϕj^\begin{aligned} \hat{e}_r &= \sin \theta \cos \phi \, \hat{i} + \sin \theta \sin \phi \, \hat{j} + \cos \theta \, \hat{k} \\ \hat{e}_\theta &= \cos \theta \cos \phi \, \hat{i} + \cos \theta \sin \phi \, \hat{j} - \sin \theta \, \hat{k} \\ \hat{e}_\phi &= -\sin \phi \, \hat{i} + \cos \phi \, \hat{j} \end{aligned}

  • 直角坐标系单位向量 (i^,j^,k^)(\hat{i}, \hat{j}, \hat{k}) 到球坐标系单位向量 (e^r,e^θ,e^ϕ)(\hat{e}_r, \hat{e}_\theta, \hat{e}_\phi) 的转换:

    i^=sinθcosϕe^r+cosθcosϕe^θsinϕe^ϕj^=sinθsinϕe^r+cosθsinϕe^θ+cosϕe^ϕk^=cosθe^rsinθe^θ\begin{aligned} \hat{i} &= \sin \theta \cos \phi \, \hat{e}_r + \cos \theta \cos \phi \, \hat{e}_\theta - \sin \phi \, \hat{e}_\phi \\ \hat{j} &= \sin \theta \sin \phi \, \hat{e}_r + \cos \theta \sin \phi \, \hat{e}_\theta + \cos \phi \, \hat{e}_\phi \\ \hat{k} &= \cos \theta \, \hat{e}_r - \sin \theta \, \hat{e}_\theta \end{aligned}

# 梯度与拉普拉斯算符

  • 二维极坐标下的梯度算符 (2\nabla_2) 与拉普拉斯算符 (22\nabla_2^2):

    2f=frer+1rfθeθ22f=1rr(rfr)+1r22fθ2\begin{aligned} \nabla_2 f &= \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_{\theta} \\ \nabla_2^2 f &= \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} \end{aligned}

  • 三维球坐标下的梯度算符 (3\nabla_3) 与拉普拉斯算符 (32\nabla_3^2):

    3f=frer+1rfθeθ+1rsinθfφeφ32f=1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fφ2\begin{aligned} \nabla_3 f &= \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_{\theta} + \frac{1}{r\sin\theta} \frac{\partial f}{\partial \varphi} \mathbf{e}_{\varphi} \\ \nabla_3^2 f &= \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left( \sin\theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} \end{aligned}


# 角动量算符

  • 角动量矢量算符 L^\hat{L} 在球坐标系下的表达式:

    L^=i(θe^φ1sinθφe^θ)\hat{L} = -i\hbar \left( \frac{\partial}{\partial\theta} \hat{e}_\varphi - \frac{1}{\sin\theta}\frac{\partial}{\partial\varphi} \hat{e}_\theta \right)

  • 角动量算符在直角坐标系下的分量表达式:

    L^x=i(sinϕθ+cotθcosϕϕ)L^y=i(cosϕθcotθsinϕϕ)L^z=iϕ\begin{aligned} \hat L_x &= i\hbar \left(\sin\phi \frac{\partial}{\partial \theta} + \cot\theta \cos\phi\frac{\partial}{\partial \phi}\right) \\ \hat L_y &= -i\hbar \left(\cos\phi \frac{\partial}{\partial \theta} - \cot\theta \sin\phi\frac{\partial}{\partial \phi}\right) \\ \hat L_z &= -i \hbar \frac{\partial}{\partial \phi} \end{aligned}

  • 角动量平方算符 L^2\hat{L}^2 在球坐标系下的表达式:

    L^2=2[1sinθθ(sinθθ)+1sin2θ2ϕ2]\hat{L}^2 = -\hbar^2 \left[ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]


# 球谐函数

# L^z\hat{L}_z 的本征函数与本征值

  • L^z\hat{L}_z 的本征方程为 L^zψ=mψ\hat L_z \psi = m\hbar \psi
  • 本征值为 mm\hbar,其中 mm 是磁量子数,取值为 m=0,±1,±2,m = 0, \pm1, \pm2, \cdots
  • 本征函数为 ψm(ϕ)=12πeimϕ\psi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}

# L^2\hat{L}^2 的本征函数与本征值

  • L^2\hat{L}^2 的本征方程为 L^2ψ=l(l+1)2ψ\hat L^2 \psi = l(l+1)\hbar^2 \psi
  • 本征值为 l(l+1)2l(l+1)\hbar^2,其中 ll 是角量子数,取值为 l=0,1,2,l = 0, 1, 2, \cdots,分别对应 s, p, d, f... 态。
  • L^2\hat{L}^2L^z\hat{L}_z 具有共同的本征函数,即球谐函数 Ylm(θ,ϕ)Y_{lm}(\theta, \phi)

# 球谐函数的定义与性质

  • 球谐函数 Ylm(θ,ϕ)Y_{lm}(\theta, \phi)L^2\hat{L}^2L^z\hat{L}_z 的共同本征函数,满足:

    L^2Ylm(θ,ϕ)=l(l+1)2Ylm(θ,ϕ)L^zYlm(θ,ϕ)=mYlm(θ,ϕ)\begin{aligned} \hat{L}^2 Y_{lm}(\theta, \phi) &= l(l+1)\hbar^2 Y_{lm}(\theta, \phi) \\ \hat{L}_z Y_{lm}(\theta, \phi) &= m\hbar Y_{lm}(\theta, \phi) \end{aligned}

    其中,量子数 mm 的取值范围为 m=l,l+1,,lm = -l, -l+1, \cdots, l
  • 球谐函数表达式:

    Ylm(θ,ϕ)=NlmPlm(cosθ)eimϕY_{lm}(\theta, \phi) = N_{lm} P_l^m(\cos \theta) e^{im\phi}

    归一化常数 NlmN_{lm} 和连带勒让德多项式 Plm(cosθ)P_l^m(\cos\theta) 的表达式为:

    Nlm=(1)m2l+14π(lm)!(l+m)!Plm(w)=12ll!(1w2)m/2dl+mdwl+m(w21)l\begin{aligned} N_{lm} &= (-1)^m \sqrt{\frac{2l+1}{4\pi}\frac{(l-|m|)!}{(l+|m|)!}} \\ P_l^m(w) &= \frac{1}{2^l l!}(1-w^2)^{|m|/2} \frac{d^{l+|m|}}{dw^{l+|m|}} (w^2-1)^l \end{aligned}

  • 宇称性质

    Ylm(θ,ϕ)=(1)mYlm(θ,ϕ)Ylm(x,y,z)=Ylm(πθ,ϕ+π)=(1)lYlm(x,y,z)\begin{aligned} Y_{lm}^*(\theta, \phi) &= (-1)^m Y_{l-m}(\theta, \phi) \\ Y_{lm}(-x, -y, -z) &= Y_{lm}(\pi-\theta, \phi+\pi) = (-1)^l Y_{lm}(x, y, z) \end{aligned}

    :此处的 (x,y,z)(-x, -y, -z) 对应球坐标中的 (πθ,ϕ+π)(\pi-\theta, \phi+\pi)

# 常用球谐函数

Y00=14πY10=34πcosθY1±1=38πsinθe±iϕ\begin{aligned} Y_{00} &= \sqrt{\frac{1}{4\pi}} \\ Y_{10} &= \sqrt{\frac{3}{4\pi}} \cos\theta \\ Y_{1\pm1} &= \mp \sqrt{\frac{3}{8\pi}} \sin\theta e^{\pm i\phi} \end{aligned}